EUROPEAN HEAT PUMP SUMMIT
POWERED BY CHILLVENTA

CONGRESS + EXPO
NUREMBERG, 24–25.10.2017

Industrial | Commercial | Residential
Heating & Cooling | Components & Equipment

hp-summit.de
Higher Heat Pump COP through better temperature match

HPT TCP Annex 48: Commercial and Industrial Heat Pump Application VI DK

Lars Reinholdt
Danish Technological Institute
Content

- DTI: short presentation
- Theoretical maximum Heat Pump COP
 A pre assessment tool for system integration?
- Gradually heating of water
 The ISEC project
- Split condensing
 The FOSCAP project
- Utilizing the glide of the working fluid
 The High Heat and the MiReHP projects
Danish Technological Institute

- A world class research and technology company converting the newest knowledge and technology into value
- 111 Years old, +1.100 people, 71 laboratories
- +13.000 clients in 65 countries
- Expert in production, materials, life science, business, energy, agro technology, meat research, robotics and more
- Revenue 150 m. EUR

Refrigeration and Heat pump technology
- 35 people
- +1.200 m² laboratories, up to 2 MW cap, 9 climate chambers
Industrial heat pump development at DTI

- Flexible Energy Optimized Split Condenser Ammonia Heat Pump - Foscap
- Mixed Refrigerant Heat Pump – MiReHP
- Ultra-high temperature hybrid heat pump for process application – HighHeat (HighHeat)
- Gradually heating of water – ISEC
- Development of Rotrex turbocompressor for steam compression
- Experimental Development of Electric Heat Pumps in Greater Copenhagen District Heating System – SVAF 2
- Direct contact heat exchangers (water vapor, heat uptake at freezing)
- Projects on COP optimization of heat pump cycles
- Heat pumps and storage (hot and/or cold)
Maximum HP COP
A generic first assessment tool

Motivation

Postulate: *Heat pumps are just “nice to have”*

- *The only purpose is heat supply in a more appropriate way (like cost (incl. taxes), CO\(_2\) footprint, CSR, ...)*
- *They do not solve technical problems*

It is “all” about COP... (....and first cost, maintenance...)

- Many heat pump solutions exist
- A way to first assessment is needed...????
Heat pump COP and system design calculations

Theoretical limit: Carnot cycle

\[COP_{HP, Car} = \frac{T_H}{T_H - T_L} \] (T in K)

Constant temperature source and sink: 15/90°C > COP\(_C\) = 4,84
Higher COP by splitting up
Higher COP by splitting up

<table>
<thead>
<tr>
<th>Process</th>
<th>T_L [°C]</th>
<th>T_H [°C]</th>
<th>COP_{HP,Car} [-]</th>
<th>Q_H [kW]</th>
<th>P [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-a</td>
<td>35</td>
<td>90</td>
<td>6,60</td>
<td>1</td>
<td>0,1515</td>
</tr>
<tr>
<td>B-b</td>
<td>30</td>
<td>84</td>
<td>6,61</td>
<td>1</td>
<td>0,1513</td>
</tr>
<tr>
<td>C-c</td>
<td>25</td>
<td>78</td>
<td>6,62</td>
<td>1</td>
<td>0,1510</td>
</tr>
<tr>
<td>D-d</td>
<td>20</td>
<td>72</td>
<td>6,63</td>
<td>1</td>
<td>0,1507</td>
</tr>
<tr>
<td>E-e</td>
<td>15</td>
<td>66</td>
<td>6,65</td>
<td>1</td>
<td>0,1504</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>Total</td>
<td>0,7549</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COP = 6,62 (+37%)

Lorenz COP

\[
COP_{HP,Lor} = \frac{T_{lm,H}}{T_{lm,H} - T_{lm,L}}
\]

(+ 51%)
Theoretical maximum COP

Heat sink outlet temperature 150°C

COP [-] vs. Source outlet temperature [°C]

- COPc
- COP_L DT = 10K
- COP_L DT = 20K
- COP_L DT = 30K
(First) system design calculation

Theoretical COP can be used for first assessment analysis of system design without knowing the heat pump technology.

Carnot and Lorenz efficiency:

- How good a real heat pump system is compared to theoretical maximum

\[
\eta_{Car} = \frac{COP_{HP}}{COP_{HP, Car}} \quad \eta_{Lor} = \frac{COP_{HP}}{COP_{HP, Lor}}
\]
(First) system design calculation

- In the best industrial refrigeration systems 60% of COP$_C$ have been realized, so high COP can also be expected by heat pumps...

\[
COP_{HP} = COP_{HP,Lor}\eta_{Lor} > COP_{HP,Lor} = \frac{COP_{HP}}{\eta_{Lor}}
\]

Example:
- System requirement to the heat supply: 150°C
- Based on the precalculations (energy cost etc.) COP = 3,0 is needed.
- Using $\eta_{Lor} = 60\% > COP_{HP,Lor} = \frac{3,0}{0,6} = 5$
(First) system design calculation

Heat sink outlet temperature 150°C

\[COP_{HP, Lor} = \frac{3.0}{0.6} = 5 \]
Fundamental process analysis

Case:
- Sink: Heating from 35 to 80°C
- Source: Cooling from 25 to 15°C

- COP_C = 5.4, COP_L = 8.9

Pinch temperature 1K
- COP_C = 5.3 > -2.7%
- COP_L = 8.5 > -4.8%
ISEC “Highly Efficient Thermodynamic Cycle with Isolated System Energy Charging”

- Traditionally full temperature increase in one step

Objective:

- up to 50 % better energy efficiency of heat pumps by optimum storage usage which reduces the average temperature level in the heat pump
- ...For systems having high temperature change on hot (and/or cold) side

- Suppored by the Danish EUDPprogram (no. 64013-0110)
- Partners: Svedan, Innotek, Alfa Laval, Arla Foods, Bjerringbro DH, Metro Therm, DTU and DTI.
ISEC “Highly Efficient Thermodynamic Cycle with Isolated System Energy Charging”
ISEC “Highly Efficient Thermodynamic Cycle with Isolated System Energy Charging”
ISEC “Highly Efficient Thermodynamic Cycle with Isolated System Energy Charging”
FOSCAP “Flexible Energy Optimized Split Condenser Ammonia Heat Pump”

Objective: Improvement of performance and cost of HP’s by use of

- Split condenser
- Optimized heat exchangers
- Higher outlet temperature

Single condenser: ex. 300 plates
FOSCAP “Flexible Energy Optimized Split Condenser Ammonia Heat Pump”

Two heat exchangers:
- Desuperheater: 50 plates
- Condenser: 200 plates (reduc. 17%)
- Condenser I: 50 plates
- Condenser II: 150 plates (reduc. 33%)
FOSCAP “Flexible Energy Optimized Split Condenser Ammonia Heat Pump”

Higher outlet temperatures:
Higher condensing pressure =
Lower COP

Split streams
Ex. 40% @ 130°C, 60% @ 65°C
Same COP
FOSCAP

- In some cases: Reduction of condensing pressure possible = Higher COP

- Supported by the Danish PSO and EUDP program (no. 64013-0543)
- Partners: Svedan, Innotek, AlfaLaval, HOFOR, Mayekawa, Egaa S&M, Bjerringbro DH, DTU and Arla
HighHeat: Development of ultra-high temperature hybrid heat pump for process application

Objective

- Increase the operating limits of the hybrid process by using the new standard components for higher pressures.
- Demonstrate efficient and reliable high capacity heat pump for high temperatures up to 130-145°C.
- Investigation of possible implementation into specific processes and the conduction of a general market survey.
- Lab (160-180°C) and full scale (>1 MW) demonstration.

Absoprtion compression heat pump process
Absorption compression heat pump process
Absorption compression heat pump process
Absorption compression heat pump process
800kW three-stage system in sewage treatment plant

\[T_{L,i} = 22.5^\circ C, \ T_{L,o} = 19.4^\circ C, \ T_{H,i} = 79.1^\circ C, \ T_{H,o} = 108.4^\circ C, \]
\[Q_H = 540 \ kW, \ P_{tot} = 198 \ kW. \]
\[\text{COP}_{HP} = 2.72, \ \eta_{Car} = 63\%, \ \eta_{Lor} = 54\% \]
Thank you

Lars Reinholdt
Danish Technological Institute
lre@teknologisk.dk
Phone: +45 7220 1270
EUROPEAN HEAT PUMP SUMMIT
POWERED BY CHILLVENTA

CONGRESS + EXPO
NUREMBERG, 24–25.10.2017
Industrial | Commercial | Residential
Heating & Cooling | Components & Equipment

hp-summit.de